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Wakes

Wakes occur many places in nature

Wind turbine wakes are typically invisible to the human eye!
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Visualization of wind turbine wakes in a wind farm

Wake effects:

Low velocity → decreased wind farm power production

Turbulent motion → shorter turbine lifetime
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Measurement of wind turbine wakes

Some experimental evidence of wind turbine wakes
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Simon et al. (2020)

Nygaard and Newcombe (2018)
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Simulation of wind farm flow

Several choices of:

1 Simulation method

2 Atmospheric profiles set at the inlet
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Different simulation methods

Trade-off between flow details and
computational cost 1.5
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Atmospheric profiles depend on the state of the atmosphere

There are roughly three different states:

Neutral: No buoyancy effects

Unstable: Turbulence added by buoyancy

Stable: Turbulence dampened by buoyancy
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Anisotropic turbulence in the atmosphere

There tends to be more turbulence in some directions (“anisotropy”) in the
atmosphere: u′u′ > v′v′ > w′w′
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Neutral conditions

Measurements

This phenomenon is not possible to model with standard RANS models
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Measurements from
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Research objectives

Title of my PhD:

“Turbulence modeling︸ ︷︷ ︸
RANS

for wind turbine wakes︸ ︷︷ ︸
important for wind farms

in non-neutral and anisotropic conditions︸ ︷︷ ︸
more realistic atmospheric conditions

”

Task 1: RANS simulation of wakes in non-neutral conditions

Revise the k-ε-fP MOST model by van der Laan et al. (2017)

Task 2: RANS simulation of wakes in anisotropic conditions

Need a more advanced turbulence model → will use the explicit algebraic Reynolds
stress model (EARSM) by Wallin & Johansson (2000)
Will only consider neutral conditions
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RANS - simulating the mean flow directly!

RANS idea: Time-average the governing equations first, before solving anything

Reynolds decomposition:

ũi = Ui + u′i

Navier-Stokes

∂ũi
∂xi

= 0

Dũi
Dt

= −1

ρ

∂p̃

∂xi
+

∂

∂xj
(2νs̃ij)

Reynolds-Averaged Navier-Stokes (RANS)

∂Ui
∂xi

= 0

DUi
Dt

= −1

ρ

∂P

∂xi
+

∂

∂xj
(2νSij − u′iu

′
j )

To simulate with RANS, we need turbulence modeling for the last term

PhD presentation DTU Wind and Energy Systems 10 / 37

time avg−−−−−→



Introduction RANS background Non-neutral conditions Anisotropic conditions Conclusion

An example of a turbulence model: The k-ε-fP model

Based on the classic k-ε model and adapted to wind farm flows by van der Laan (2014)

Only valid for neutral conditions!

Step 1: Turbulent transport equations

Dk

Dt
= P − ε+D(k)

Dε

Dt
= (Cε1P − Cε2ε)

ε

k
+D(ε)

Step 2: Eddy viscosity

fP = f

(
k, ε,

∂Ui
∂xj

)
νt = CµfP

k2

ε

Step 3: Boussinesq hypothesis

u′iu
′
j = −νt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
kδij
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The k-ε-fP model in action for a neutral case

Simulation of a V80 turbine with EllipSys3D (RANS) and compared to LES (Aarhus
University code)
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Realizability

A turbulence model can sometimes
give unphysical turbulence

Realizable turbulence

0 ≤ u′αu′α ≤ 2k(
u′αu

′
β

)2

≤ u′αu′α u′βu′β ≤ k
2

or equivalently
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4
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Overprediction of turbulence intensity

Both k-ε and k-ε-fP models tend to overpredict turbulence intensity (TI)
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Extending the neutral setup to non-neutral conditions

Task 1: RANS simulation of wakes in non-neutral conditions

Buoyant production of
turbulence

Unstable: B > 0

Neutral: B = 0

Stable: B < 0
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k-ε-fP MOST (van der Laan et al, 2017) is combination of:

k-ε-fP model (van der Laan, 2014)
Monin-Obukhov similarity theory (MOST) (1954)
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modify−−−−→
1 Turbulence model

2 Inflow model
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The k-ε-fP MOST turbulence model

Modified Step 1:

Dk

Dt
= P − ε+D(k) + B − Sk

Dε

Dt
= (Cε1P − Cε2ε+ Cε3 B )

ε

k
+D(ε)

B is the buoyant production or destruction of TKE (“indirect” buoyant forcing)

B = −νt
(
∂U

∂z

)2
ζΦh
σθΦ2

m

The “direct” buoyant forcing term in the vertical momentum equation is neglected in
this model
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Non-neutral inflow with MOST

Modified inflow profiles using MOST
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Application of the k-ε-fP MOST model to a row of turbines
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van der Laan et al. (2021)
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Investigating the unstable k-ε-fP MOST model (Paper 1)

Problem 1:

Freestream: B changes with height

→ Unexpected

MOST should have B = − u3
∗
κL
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Investigating the unstable k-ε-fP MOST model

Problem 2:

Near-wake: B seems to scale with P
→ Unexpected

Wind tunnel experiments show that
B � P in the near-wake (Hancock
and Zhang, 2015)
LES also show that B/P = O(0.01)
in the wake shear layers!
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The constant B model

A simple way to fix the two problems:

���
���

���
��XXXXXXXXXXX

B = −νt
(
∂U

∂z

)2
ζΦh
σθΦ2

m

, B = − u
3
∗

κL

Exact in the freestream

Only a first order approximation in the wake, but P dominates there anyway
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Validation of the k-ε-fP MOST “cstB” model

Tested the new model on five cases from the literature

Added a constant, CB , for fine-tuning
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Validation cases

Case Type

SWiFT LES, Exp.
NTK41 LES, Exp.

V80-Abkar LES
V80-Keck LES

NREL5MW LES
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More testing of the model (Paper 2)

Did a more detailed comparison study with new LES runs
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Reynolds stresses

Normal stresses overestimated

→ k = 1
2u
′
iu
′
i and TI overestimated

Shear stresses compares better

→ Velocity deficit compares better
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Anisotropic conditions

Task 2: RANS simulation of wakes in anisotropic conditions

u′u′ > v′v′ > w′w′
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Neutral conditions

Measurements
Simulation (k-ε-fP)

The k-ε-fP model simply predicts u′u′ = v′v′ = w′w′
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Anisotropy-limitation of the Boussinesq hypothesis

Step 3: Boussinesq hypothesis

u′iu
′
j = −νt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+

2

3
kδij

The normal components in the freestream (horizontally homogeneous flat terrain):

u′αu
′
α = −νt

2
�
�
��

0
∂Uα
∂xα

+
2

3
k

=
2

3
k

No matter the model for νt, the TKE is always split equally between the three
components in the freestream!
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A more general constitutive relation

Pope (1975) proved that there is a more general, but finite expression for u′iu
′
j (or

equivalently for aij ≡
u′iu
′
j

k −
2
3δij):

aij =

10∑
l=1

βlT
(l)
ij

What should the coefficients, βl, be?

Set β{2−10} = 0→ “Linear eddy-viscosity model (EVM)”
Tune with data → “Non-linear EVM (NLEVM)”
Obtain from simplification of differential Reynolds stress model (DRSM) → “EARSM”
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Tensor basis

T(1) = S

T(2) = S2 − 1
3
IISI

T(3) = Ω2 − 1
3
IIΩI

T(4) = SΩ − ΩS

T(5) = S2Ω − ΩS2

T(6) = SΩ2 + Ω2S − 2
3
IV I

T(7) = S2Ω2 + Ω2S2 − 2
3
V I

T(8) = SΩS2 − S2ΩS

T(9) = ΩSΩ2 − Ω2SΩ

T(10) = ΩS2Ω2 − Ω2S2Ω
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Derivation of an explicit algebraic Reynolds stress model (EARSM)

Independent breakthroughs by Wallin & Johansson (1996), Girimaji (1996) and Ying
& Canuto (1996) regarding the non-linearity
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Daij
Dt

= . . .

aij = f1(aij , Sij ,Ωij)

aij = f2(Sij ,Ωij)
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Comparing the WJ-EARSM with some linear EVMs

I focused on the EARSM by Wallin & Johansson
(2000), which can be written as:

aij = −2Ceff
µ Sij + a

(ex)
ij 0
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Model Ceff
µ a

(ex)
ij

k-ε Cµ 0
k-ε-fP CµfP (IIS , IIΩ) 0

2D WJ-EARSM f(IIS , IIΩ) g1(βl, T
(l)
ij )

3D WJ-EARSM f(IIS , IIΩ) g2(βl, T
(l)
ij )

IIS ≡ SijSji , IIΩ ≡ ΩijΩji

−
2

3
≤ aαα ≤

4

3

−1 ≤ aαβ ≤ 1
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Model verification (Paper 3)

Used three basic flows to verify the code implementation

Homogeneous shear flow
Channel flow
Square duct flow
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Comparison of neutral inflow profiles

WJ-EARSM is able to predict freestream anisotropy!
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Disk-averaged recovery

Better velocity deficit and TI predictions with WJ-EARSM

The 2D WJ-EARSM gives almost the same results as the more complicated 3D
WJ-EARSM
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Anisotropy split

A possible explanation of the similar behavior of the 2D and 3D WJ-EARSMs
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Tendency of “top-hat” shaped velocity profile

A flattened wake center was observed in the WJ-EARSM simulations, which can be
corrected in different ways:

Tuning the Rotta coefficient
Taking wind direction uncertainty into account
Diffusion correction
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Application of WJ-EARSM to a row of turbines

The WJ-EARSM is numerically stable also for larger cases
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Conclusions

The success of the k-ε-fP model is connected with its
realizability property

Task 1: The k-ε-fP MOST model has been revised to
simulate wind turbine wakes in non-neutral conditions

Based on the observation that B � P in the wake shear
layer
Improved wake velocity deficit prediction for a range of
validation cases

Task 2: The WJ-EARS model (2000) has been utilized to
simulate wind turbine wakes in anisotropic conditions

More complete description of the Reynolds stresses at the
same cost as traditional two-equation models
Promising results for neutral conditions
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Conclusions
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Conclusions

The success of the k-ε-fP model is connected with its
realizability property

Task 1: The k-ε-fP MOST model has been revised to
simulate wind turbine wakes in non-neutral conditions

Based on the observation that B � P in the wake shear
layer
Improved wake velocity deficit prediction for a range of
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The end for now..

Some outlooks:

Using pressure-driven boundary layer for RANS
simulations

URANS with the non-neutral extension of the
WJ-EARSM by Lazeroms (2015) and Zeli (2021)

Comparison with advanced remote sensing measurements
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Tendency of “top-hat” shaped velocity profile (expanded)

A flattened wake center was observed in the WJ-EARSM simulations

Diffusion correction The Rotta coefficient Wind direction uncertainty
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LES setup

The LES code is a version of the code from the Porté-Agel group

Spectral discretization in horizontal directions, FD in vertical direction

Fringe region technique used to introduce precursor flow

Domain size, Lx/D = 60, Ly/D = 10 and Lz/D = 5

Uniform spatial resolution, ∆x/D = 8, ∆y/D = ∆z/D = 16

Periodic BCs in horizontal, symmetry top BC and rough wall BC.

Adams-Bashforth time integration

Conservative time step throughout domain, U∆t
∆x

= 0.06

LASD SGS model

Averaging time is 20 flowthrough times, ∆tave

Lx/Uref
= 20

Turbine modeled as AD with uniform loading and using 1D mom’m controller
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RANS setup

EllipSys3D FV code

SIMPLE method with modified Rhie-Chow algorithm

Domain size, Lx/D = 142, Ly/D = 129 and Lz/D = 25

Wake domain size, lx/D = 16, ly/D = 3 and lz/D = 3

Wake domain spatial resolution, ∆x/D = ∆y/D = 10

Grid is stretched in vertical direction and outwards from wake domain using
hyperbolic tangent method (Thompson, 1985)

Inlet BC, outlet BC, periodic side BCs, inlet top BC and rough wall BC.

Turbine modeled as AD with uniform loading and fixed force control
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