# Turbulence modeling for wind turbine wakes in non-neutral and anisotropic conditions

#### PhD student: Mads Baungaard Supervisors: Paul van der Laan and Mark Kelly

Technical University of Denmark (DTU), Wind and Energy Systems, Risø Campus, Denmark

November 17, 2022



| Introduction | RANS background |       | Conclusion |
|--------------|-----------------|-------|------------|
| •0000000     |                 |       |            |
|              |                 | Wakes |            |

• Wakes occur many places in nature







• Wind turbine wakes are typically invisible to the human eye!



| Introduction $0 \bullet 0000000$ | RANS background<br>00000                    | Non-neutral conditions<br>0000000000 | Anisotropic conditions<br>0000000000 | Conclusion<br>00 |
|----------------------------------|---------------------------------------------|--------------------------------------|--------------------------------------|------------------|
|                                  | Visualization of                            | wind turbine wake                    | es in a wind farm                    |                  |
| Wake e                           | effects:                                    |                                      |                                      |                  |
| • Lo                             | w velocity $\rightarrow$ decreased $\gamma$ | wind farm power production           | on                                   |                  |

 $\bullet\,$  Turbulent motion  $\rightarrow$  shorter turbine lifetime



Stevens et. al (2014)



• Some experimental evidence of wind turbine wakes



4/37

| Introduction | RANS background |                     |        | Conclusion |
|--------------|-----------------|---------------------|--------|------------|
| 0000000      |                 |                     |        |            |
|              | Simu            | lation of wind farr | n flow |            |

Several choices of:

- Simulation method
- **2** Atmospheric profiles set at the inlet







### Atmospheric profiles depend on the state of the atmosphere

There are roughly three different states:

- Neutral: No buoyancy effects
- Unstable: Turbulence added by buoyancy
- Stable: Turbulence dampened by buoyancy







• This phenomenon is not possible to model with standard RANS models

| ntroduction<br>0000000● | RANS background<br>00000                | Non-neutral conditions<br>0000000000 | Anisotropic conditions<br>0000000000  | Conclusion<br>00 |
|-------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|------------------|
|                         |                                         | Research object                      | tives                                 |                  |
| Title of 1              | my PhD:                                 |                                      |                                       |                  |
| "Turbu                  | lence modeling for wind                 | turbine wakes in non                 | -neutral and anisotropic conditio     | ons"             |
| $\bullet$ Tasl          | RANS impor                              | tant for wind farms                  | more realistic atmospheric conditions |                  |
| ٥                       | Revise the $k - \varepsilon - f_P$ MOST | ſ model by van der Laa               | n et al. $(2017)$                     |                  |

- <u>Task 2</u>: RANS simulation of wakes in anisotropic conditions
  - Need a more advanced turbulence model  $\rightarrow$  will use the explicit algebraic Reynolds stress model (EARSM) by Wallin & Johansson (2000)
  - Will only consider neutral conditions

| RANS background |                  |                | Conclusion |
|-----------------|------------------|----------------|------------|
| 00000           |                  |                |            |
| RANS - sim      | ulating the mean | flow directly! |            |

• RANS idea: Time-average the governing equations first, before solving anything

Reynolds decomposition:

$$\tilde{u}_i = U_i + u'_i$$

<u>Navier-Stokes</u>

Reynolds-Averaged Navier-Stokes (RANS)

 $\begin{array}{l} \frac{\partial \tilde{u}_i}{\partial x_i} = 0 \\ \frac{D\tilde{u}_i}{Dt} = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_i} + \frac{\partial}{\partial x_j} (2\nu \tilde{s}_{ij}) \end{array} \xrightarrow{\mathrm{time avg}} & \begin{array}{l} \frac{\partial U_i}{\partial x_i} = 0 \\ \frac{DU_i}{Dt} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} (2\nu S_{ij} - \overline{u'_i u'_j}) \end{array}$ 

• To simulate with RANS, we need turbulence modeling for the last term

| RANS background |                   |                                       | Conclusion |
|-----------------|-------------------|---------------------------------------|------------|
| 00000           |                   |                                       |            |
| An example of a | turbulence model: | The $k$ - $\varepsilon$ - $f_P$ model |            |

- Based on the classic k- $\varepsilon$  model and adapted to wind farm flows by van der Laan (2014)
- Only valid for neutral conditions!

Step 1: Turbulent transport equations  

$$\frac{Dk}{Dt} = \mathcal{P} - \varepsilon + \mathcal{D}^{(k)}$$

$$\frac{D\varepsilon}{Dt} = (C_{\varepsilon 1}\mathcal{P} - C_{\varepsilon 2}\varepsilon)\frac{\varepsilon}{k} + \mathcal{D}^{(\varepsilon)}$$

Step 2: Eddy viscosity  $f_P = f\left(k, \varepsilon, \frac{\partial U_i}{\partial x_j}\right)$   $\nu_t = C_\mu f_P \frac{k^2}{\varepsilon}$ 

Step 3: Boussinesq hypothesis $\overline{u'_i u'_j} = -\nu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i}\right) + \frac{2}{3}k\delta_{ij}$ 



• Simulation of a V80 turbine with EllipSys3D (RANS) and compared to LES (Aarhus University code)



| Introduction | RANS background | Non-neutral conditions | Anisotropic conditions | Conclusion |
|--------------|-----------------|------------------------|------------------------|------------|
| 00000000     | 000●0           | 0000000000             | 0000000000             | 00         |
|              |                 | Realizability          |                        |            |

• A turbulence model can sometimes give unphysical turbulence



$$a_{ij} \equiv \frac{\overline{u_i' u_j'}}{k} - \frac{2}{3} \delta_{ij}$$





• Both  $k - \varepsilon$  and  $k - \varepsilon - f_P$  models tend to overpredict turbulence intensity (TI)





• Task 1: RANS simulation of wakes in non-neutral conditions



•  $k - \varepsilon - f_P$  MOST (van der Laan et al, 2017) is combination of:

- $k \varepsilon f_P$  model (van der Laan, 2014)
- Monin-Obukhov similarity theory (MOST) (1954)

Turbulence model
 Inflow model

modify



•  $\mathcal{B}$  is the buoyant production or destruction of TKE ("indirect" buoyant forcing)

$$\mathcal{B} = -\nu_t \left(\frac{\partial U}{\partial z}\right)^2 \frac{\zeta \Phi_h}{\sigma_\theta \Phi_m^2}$$

• The "direct" buoyant forcing term in the vertical momentum equation is neglected in this model



• Modified inflow profiles using MOST





x/(7D)

18/37









Problem 2:

- Near-wake:  $\mathcal{B}$  seems to scale with  $\mathcal{P}$
- $\rightarrow$  Unexpected
  - Wind tunnel experiments show that *B* ≪ *P* in the near-wake (Hancock and Zhang, 2015)
  - LES also show that  $\mathcal{B}/\mathcal{P} = \mathcal{O}(0.01)$  in the wake shear layers!





| Introduction<br>00000000 | RANS background<br>00000 | Non-neutral conditions<br>00000000000 | Anisotropic conditions<br>0000000000 | Conclusion<br>00 |
|--------------------------|--------------------------|---------------------------------------|--------------------------------------|------------------|
|                          | Τ                        | The constant ${\cal B}$ mod           | del                                  |                  |
|                          |                          |                                       |                                      |                  |

• A simple way to fix the two problems:

$$\mathcal{B} = -\nu_t \left(\frac{\partial U}{\partial z}\right)^2 \frac{\zeta \Phi_h}{\sigma_\theta \Phi_m^2} \quad , \quad \mathcal{B} = -\frac{u_*^3}{\kappa L}$$

- Exact in the freestream
- Only a first order approximation in the wake, but  $\mathcal{P}$  dominates there anyway





PhD presentation DTU Wind and Energy Systems



#### • Did a more detailed comparison study with new LES runs



| Introduction | RANS background | Non-neutral conditions | Anisotropic conditions | Conclusion |
|--------------|-----------------|------------------------|------------------------|------------|
|              |                 | Reynolds stresses      |                        |            |

- Normal stresses overestimated  $\rightarrow k = \frac{1}{2}\overline{u'_i u'_i}$  and TI overestimated
- Shear stresses compares better
  - $\rightarrow$  Velocity deficit compares better







• The k- $\varepsilon$ - $f_P$  model simply predicts  $\overline{u'u'} = \overline{v'v'} = \overline{w'w'}$ 



• The normal components in the freestream (horizontally homogeneous flat terrain):

$$\overline{u_{\alpha}' u_{\alpha}'} = -\nu_t \left( 2 \frac{\partial U_{\alpha}}{\partial x_{\alpha}}^{*0} \right) + \frac{2}{3}k$$
$$= \frac{2}{3}k$$

• No matter the model for  $\nu_t$ , the TKE is always split equally between the three components in the freestream!

| Introduction<br>00000000 | RANS background<br>00000 | Non-neutral conditions<br>000000000 | Anisotropic conditions<br>0000000000 | Conclusion<br>00 |
|--------------------------|--------------------------|-------------------------------------|--------------------------------------|------------------|
|                          | A more                   | general constitutiv                 | ve relation                          |                  |
|                          |                          |                                     |                                      |                  |

• Pope (1975) proved that there is a more general, but finite expression for  $\overline{u'_i u'_j}$  (or equivalently for  $a_{ij} \equiv \frac{\overline{u'_i u'_j}}{k} - \frac{2}{3}\delta_{ij}$ ):  $\frac{\frac{1}{2}}{\pi} \frac{\overline{u'_i u'_j}}{k} - \frac{2}{3}\delta_{ij}$ 

| 10                                   |  |
|--------------------------------------|--|
| $a_{ij} = \sum \beta_l T_{ij}^{(l)}$ |  |
| l=1                                  |  |

| $T^{(1)} = S$                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------|
| $\mathbf{T}^{(2)} = \mathbf{S}^2 - \frac{1}{3} II_S \mathbf{I}$                                                   |
| $\mathbf{T}^{(3)} = \mathbf{\Omega}^2 - rac{1}{3} II_{\mathbf{\Omega}} \mathbf{I}$                               |
| $\mathbf{T}^{(4)} = \mathbf{S}\mathbf{\Omega} - \mathbf{\Omega}\mathbf{S}^{(4)}$                                  |
| $\mathbf{T}^{(5)} = \mathbf{S}^2 \mathbf{\Omega} - \mathbf{\Omega} \mathbf{S}^2$                                  |
| $\mathbf{T}^{(6)} = \mathbf{S}\mathbf{\Omega}^2 + \mathbf{\Omega}^2\mathbf{S} - \frac{2}{3}IV\mathbf{I}$          |
| $\mathbf{T}^{(7)} = \mathbf{S}^2 \mathbf{\Omega}^2 + \mathbf{\Omega}^2 \mathbf{S}^2 - \frac{2}{3} V \mathbf{I}$   |
| $\mathbf{T}^{(8)} = \mathbf{S} \mathbf{\Omega} \mathbf{S}^2 - \mathbf{S}^2 \mathbf{\Omega} \mathbf{S}$            |
| $\mathbf{T}^{(9)} = \mathbf{\Omega} \mathbf{S} \mathbf{\Omega}^2 - \mathbf{\Omega}^2 \mathbf{S} \mathbf{\Omega}$  |
| $\mathbf{T}^{(10)} = \mathbf{\Omega}\mathbf{S}^2\mathbf{\Omega}^2 - \mathbf{\Omega}^2\mathbf{S}^2\mathbf{\Omega}$ |

- What should the coefficients,  $\beta_l$ , be?
  - Set  $\beta_{\{2-10\}} = 0 \rightarrow$  "Linear eddy-viscosity model (EVM)"
  - Tune with data  $\rightarrow$  "Non-linear EVM (NLEVM)"
  - Obtain from simplification of differential Reynolds stress model (DRSM)  $\rightarrow$  "EARSM"





• Independent breakthroughs by Wallin & Johansson (1996), Girimaji (1996) and Ying & Canuto (1996) regarding the non-linearity

| Introduction<br>00000000 | RANS background<br>00000           | Non-neutral conditions<br>0000000000 | Anisotropic conditions<br>0000000000                                                  | Conclusion<br>00 |
|--------------------------|------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|------------------|
| (                        | Comparing the V                    | VJ-EARSM with s                      | some linear EVMs                                                                      |                  |
|                          |                                    |                                      | $\frac{30}{5}$ Standard $k - \varepsilon$                                             | 0.10             |
| • I focus                | sed on the EARSM by                | Wallin & Johansson                   |                                                                                       | 0.09             |
| (2000)                   | , which can be written             | as:                                  | $\sqrt{-II_{\Omega}}$ [-] 15<br>10                                                    | - 0.08           |
|                          | $a_{ij} = -2C_{\mu}^{\text{eff}}S$ | $S_{ij} + a_{ij}^{(\mathrm{ex})}$    | 5<br>0<br>30                                                                          | - 0.07           |
|                          |                                    |                                      | $\frac{50}{25}$ $\frac{k \cdot \varepsilon \cdot f_P}{k \cdot \varepsilon \cdot f_P}$ | - 0.06           |
|                          |                                    | ( )                                  | 20                                                                                    |                  |

|                      | Model                               |                 | $C_{\mu}^{	ext{eff}}$            | $a_{ij}^{(\mathrm{ex})}$        |
|----------------------|-------------------------------------|-----------------|----------------------------------|---------------------------------|
|                      | $k	extsf{-}arepsilon$               |                 | $C_{\mu}$                        | 0                               |
|                      | $k	extsf{-}arepsilon	extsf{-} f_P$  | C               | $f_{\mu}f_{P}(H_{S},H_{\Omega})$ | 0                               |
|                      | 2D WJ-EAR                           | $\mathbf{SM}$   | $f(H_S, H_\Omega)$               | $g_1(eta_l,T^{(l)}_{ij})$       |
|                      | 3D WJ-EAR                           | SM              | $f(H_S, H_\Omega)$               | $g_2(eta_l,T^{(l)}_{ij})$       |
|                      |                                     | $II_S \equiv S$ | $I_{ij}S_{ji}$ , $II_{\Omega}$   | $\equiv \Omega_{ij}\Omega_{ji}$ |
| $-\frac{2}{3} \le a$ | $t_{\alpha\alpha} \leq \frac{4}{3}$ |                 |                                  |                                 |
| $-1 \leq a$          | $a_{\alpha\beta} \leq 1$            |                 |                                  |                                 |

PhD presentation



| RANS background |                     | Anisotropic conditions | Conclusion |
|-----------------|---------------------|------------------------|------------|
|                 |                     | 000000000              |            |
| Model           | verification (Paper | 3)                     |            |

- Used three basic flows to verify the code implementation
  - Homogeneous shear flow
  - Channel flow
  - Square duct flow





### <u>Comparison</u> of neutral inflow profiles

• WJ-EARSM is able to predict freestream anisotropy!



| RANS background |                    | Anisotropic conditions | Conclusion |
|-----------------|--------------------|------------------------|------------|
|                 |                    | 00000000000            |            |
| D               | isk-averaged recov | ery                    |            |

- Better velocity deficit and TI predictions with WJ-EARSM
- The 2D WJ-EARSM gives almost the same results as the more complicated 3D WJ-EARSM



| ntroduction      | RANS background | Non-neutral conditions | Anisotropic conditions | Conclusion |  |  |  |
|------------------|-----------------|------------------------|------------------------|------------|--|--|--|
| 00000000         | 00000           | 000000000              | 0000000000             | 00         |  |  |  |
| Anisotropy split |                 |                        |                        |            |  |  |  |

• A possible explanation of the similar behavior of the 2D and 3D WJ-EARSMs





- A flattened wake center was observed in the WJ-EARSM simulations, which can be corrected in different ways:
  - Tuning the Rotta coefficient
  - Taking wind direction uncertainty into account
  - Diffusion correction





• The WJ-EARSM is numerically stable also for larger cases



| Introduction<br>00000000 | RANS background<br>00000 | Non-neutral conditions<br>0000000000 | Anisotropic conditions<br>0000000000 | Conclusion |
|--------------------------|--------------------------|--------------------------------------|--------------------------------------|------------|
|                          |                          | Conclusions                          |                                      |            |
|                          |                          |                                      |                                      |            |

- The success of the k- $\varepsilon$ - $f_P$  model is connected with its realizability property
- Task 1: The  $k \varepsilon f_P$  MOST model has been revised to simulate wind turbine wakes in non-neutral conditions
  - Based on the observation that  $\mathcal{B}\ll \mathcal{P}$  in the wake shear layer
  - Improved wake velocity deficit prediction for a range of validation cases
- <u>Task 2:</u> The WJ-EARS model (2000) has been utilized to simulate wind turbine wakes in anisotropic conditions
  - More complete description of the Reynolds stresses at the same cost as traditional two-equation models
  - Promising results for neutral conditions



| Introduction | RANS background | Non-neutral conditions | Anisotropic conditions | Conclusion |
|--------------|-----------------|------------------------|------------------------|------------|
| 00000000     | 00000           | 0000000000             | 00000000000            | ●0         |
|              |                 | Conclusions            |                        |            |

- The success of the k- $\varepsilon$ - $f_P$  model is connected with its realizability property
- Task 1: The  $k \varepsilon f_P$  MOST model has been revised to simulate wind turbine wakes in non-neutral conditions
  - Based on the observation that  $\mathcal{B}\ll \mathcal{P}$  in the wake shear layer
  - Improved wake velocity deficit prediction for a range of validation cases
- <u>Task 2:</u> The WJ-EARS model (2000) has been utilized to simulate wind turbine wakes in anisotropic conditions
  - More complete description of the Reynolds stresses at the same cost as traditional two-equation models
  - Promising results for neutral conditions



| RANS background |             | Conclusion |
|-----------------|-------------|------------|
|                 |             | <b>●</b> ○ |
|                 | Conclusions |            |

- The success of the k- $\varepsilon$ - $f_P$  model is connected with its realizability property
- Task 1: The  $k \varepsilon f_P$  MOST model has been revised to simulate wind turbine wakes in non-neutral conditions
  - Based on the observation that  $\mathcal{B}\ll \mathcal{P}$  in the wake shear layer
  - Improved wake velocity deficit prediction for a range of validation cases
- <u>Task 2:</u> The WJ-EARS model (2000) has been utilized to simulate wind turbine wakes in anisotropic conditions
  - More complete description of the Reynolds stresses at the same cost as traditional two-equation models
  - Promising results for neutral conditions



0

-1





0.5

-10 -05 00 05 10

10

0.5

Angelou et al. (2021)

0.5

0.5

-1.0 -0.5

0.0

300 301 302 303 304

 $\Theta$  [K]

## Tendency of "top-hat" shaped velocity profile (expanded)

• A flattened wake center was observed in the WJ-EARSM simulations



## LES setup

- The LES code is a version of the code from the Porté-Agel group
- Spectral discretization in horizontal directions, FD in vertical direction
- Fringe region technique used to introduce precursor flow
- Domain size,  $L_x/D = 60$ ,  $L_y/D = 10$  and  $L_z/D = 5$
- Uniform spatial resolution,  $\Delta_x/D = 8$ ,  $\Delta_y/D = \Delta_z/D = 16$
- Periodic BCs in horizontal, symmetry top BC and rough wall BC.
- Adams-Bashforth time integration
- Conservative time step throughout domain,  $\frac{U\Delta t}{\Delta r} = 0.06$
- LASD SGS model
- Averaging time is 20 flow through times,  $\frac{\Delta t_{\rm ave}}{L_x/U_{\rm ref}}=20$
- Turbine modeled as AD with uniform loading and using 1D mom'm controller

## RANS setup

- $\bullet~$ EllipSys3D FV code
- SIMPLE method with modified Rhie-Chow algorithm
- Domain size,  $L_x/D = 142$ ,  $L_y/D = 129$  and  $L_z/D = 25$
- Wake domain size,  $l_x/D = 16$ ,  $l_y/D = 3$  and  $l_z/D = 3$
- Wake domain spatial resolution,  $\Delta_x/D = \Delta_y/D = 10$
- Grid is stretched in vertical direction and outwards from wake domain using hyperbolic tangent method (Thompson, 1985)
- Inlet BC, outlet BC, periodic side BCs, inlet top BC and rough wall BC.
- Turbine modeled as AD with uniform loading and fixed force control