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Relevance
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Atmospheric boundary layer (ABL)

→ High-Re flow

3 of 24



• Flat terrain + uniform surface + uniform atmospheric forcing
      → Mean flow and turbulence statistics are independent of x and y.

Horizontally homogeneous ABL
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Mathematical formulation
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ABL with 
K- ε model:



Maple/FORTRAN 1d-solver

• KTH PhDs, Lazeroms and Zeli, used a Maple/FORTRAN 1d-solver for their ABL 
simulations (written by S. Wallin).

Input: 
High-level description of model 
equations and BCs.

FORTRAN code

Maple code

Input: 
Grid
Initial conditions
Model parameters

Results

Automatic discretization and 
generation of FORTRAN code.

Run code.
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New Python 1d-solver

• In the Autumn 2021, a similar code was written in Python (by S. Wallin).

Input: 
High-level description of model 
equations and BCs.
Grid
Initial conditions
Model parameters

Python code

Results

Run code.
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Python code verification

Can the Python code reproduce ABL results 
from Lazeroms (2015) and Zeli (2021)?
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Some preliminary results for the GABLS 1 case:

Zeli et al. (2020)
Python code
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Wall boundary 
condition for ABLs



Example: neutral atmospheric channel flow

Assume
• No Coriolis
• Neutral ABL (→ no temperature)
• Regular K-ε model
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Wall boundary condition (BC) for ABLs

• Model wall BC with neutral 
log-law.

z0 [m] Terrain

1.0 City

0.1 Farmland with closed appearance

0.01 Airport runway areas

0.001 Snow surfaces

0.0001 Water areas (lakes, fjords, open sea)
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Coordinate transformation

• Numerically convenient to re-define z → z + z0
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A naïve BC implementation 1/2

• Set BC:

• Estimate friction velocity from first cell via log-law:
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A naïve BC implementation 2/2

u* overestimated!

• Analytical steady-state value of u*:
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• As suggested by Zeli et al. (2019):

• Idea: relax ε1 towards log-law value. Set DK=0 in first 
cell-center to be consistent with log-law. 

     Plog= εlog, when K1 attains log-law value.

A more elaborate BC 1/4
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• Zeli et al. (2019) suggested the BCs:

• I found the U=0 BC to be problematic for numerical 
convergence → changed to flux BC*:

A more elaborate BC 2/4

*(and set an artificial wall eddy viscosity to still obtain U(0)=0; could then set dK/dy=deps/dy=0) 16 of 24



A more elaborate BC 3/4

Converge to the correct value!
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A more elaborate BC 4/4

The profiles obey log-law at bottom of domain, 
except a small overshoot of TKE.

18 of 24



The “TKE overshoot”-problem 1/3

• Overshoot occurs in second cell.

First cell

Second cell
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The “TKE overshoot”-problem 2/3

• Not only for channel flow; occurs for any ABL type.
• A commonly observed problem in various codes.

Sumner & Masson (2012)

van der Laan et al. (2017)

Richards & Norris (2011)
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The “TKE overshoot”-problem 3/3

• It is a discretization problem connected to the shear stress.

• Richards & Norris (2011) derived an analytical estimate of 
the production overestimation:
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A solution to the “TKE overshoot”-problem

• Richards & Norris (2011) suggested an alternative discretization of the shear production:

No peak in 
second cell!
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Comparison of methods
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Summary

2
1

3

- Modify K and ε eqs.
- Use flux BC for U.

- TKE overshoot often 
observed in 2nd cell.

- Can be removed by 
consistent discretization.

- All ABL simulations are 
based on log-law BC.
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Extra slides



Turbulence modelling for ABL

• Need to model
• Recent work by Lazeroms (2015) and Zeli (2021) investigated using Explicit 

Algebraic Reynolds Stress models (EARSMs).
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Explicit Algebraic Reynolds Stress Model (EARSM)

• Three algebraic expressions:

• Three transport equations:
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Shear stresses

• Should plot the shear stresses at the faces or use a nodes-average:
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