RANS simulation of a wind turbine wake in the neutral atmospheric pressure-driven boundary layer

Mads Baungaard¹, Paul van der Laan¹, Stefan Wallin² and Mahdi Abkar³

¹Technical University of Denmark (DTU) ²Royal Institute of Technology (KTH)

³Aarhus University (AU)

20 June 2023, Wake conference, Visby

DTU

Abkar and Porte-Agel (2015)

Constructing log-law profile

Aka. "neutral atmospheric surface layer (ASL)"

- The standard inflow in EllipSys3D RANS
- Analytic: Set (u_*, z_0) to obtain (U_{ref}, I_{ref})

A "consistent comparison"

 \Rightarrow Also use PDBL in RANS!

ASL vs PDBL

- Analytic inflow
- Dirichlet-driven (dP/dx = 0)

PDBL

- No analytic inflow (need precursor)
- Pressure-driven (dP/dx < 0)

Different profiles of:

- 1) Velocity
- 2) Tubulent kinetic energy (TKE)
- 3) Shear stress

Precursor in RANS

- No analytic solution \rightarrow need a precursor.
- In RANS we can use a 1D precursor!

ASL vs PDBL: velocity (1/3)

• Similar at low z/L_z

ASL vs PDBL: velocity (1/3)

ASL vs PDBL: TKE (2/3)

• TKE decreases with height in a PDBL. \rightarrow Also observed in the real atmosphere.

ASL vs PDBL: shear stress (3/3)

How important for wakes?

How important is consistent inflow profiles for RANS-to-LES wake comparisons?

(not to scale)

- Single V80 turbine
- U_{ref} = 8 m/s, I_{ref} = 5.6%, C_T=0.77
- Domain size: 60 x 12 x 4.5 D³
- LES by M. Abkar with pseudospectral code
- RANS with EllipSys3D using WJ-EARSM turbulence model

Contours

RANS simulations of wakes in neutral PDBL

11/15

Contours

Fidelity

Contours

Disk recovery

• RANS ASL (if correct U_{ref} and I_{ref}) is as good as RANS PDBL for RANS-to-LES wake comparison.

Effect of height-to-diameter, L_z/D

What about other PDBL cases?

The change of TKE (and shear stress) across the wake depends on:

- ABL height, L_z
- Rotor diameter, D

<u>Hypothesis:</u>

For smaller L_z/D , the PDBL and ASL wake results will be less similar.

Effect of height-to-diameter, L_z/D

What about other PDBL cases?

The change of TKE (and shear stress) across the wake depends on:

- ABL height, L_z
- Rotor diameter, D

<u>Hypothesis:</u>

For smaller L_z/D , the PDBL and ASL wake results will be less similar.

Effect of height-to-diameter, L_z/D

Conclusion

How important is consistent inflow profiles? (in context of neutral ASL vs PDBL)

1) If correct U_{ref} and I_{ref} , ASL can be "good enough". 2) Using ASL to model PDBL inflow is better for large L_z/D . 3) ASL is a special case of PDBL.

PDBL is a simple inflow model, but:

- No veer
- "Hard" ABL top

Next step up in "realism": CNBL

